Dual-Branch Cross-Fusion Normalizing Flow for RGB-D Track Anomaly Detection

With the ease of acquiring RGB-D images from line-scan 3D cameras and the development of computer vision, anomaly detection is now widely applied to railway inspection. As 2D anomaly detection is susceptible to capturing condition, a combination of depth maps is now being explored in industrial insp...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaorong Gao, Pengxu Wen, Jinlong Li, Lin Luo
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/8/2631
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the ease of acquiring RGB-D images from line-scan 3D cameras and the development of computer vision, anomaly detection is now widely applied to railway inspection. As 2D anomaly detection is susceptible to capturing condition, a combination of depth maps is now being explored in industrial inspection to reduce these interferences. In this case, this paper proposes a novel approach for RGB-D anomaly detection called Dual-Branch Cross-Fusion Normalizing Flow (DCNF). In this work, we aim to exploit the fusion strategy for dual-branch normalizing flow with multi-modal inputs to be applied in the field of track detection. On the one hand, we introduce the mutual perception module to acquire cross-complementary prior knowledge in the early stage. On the other hand, we exploit the effectiveness of the fusion flow to fuse the dual-branch of RGB-D inputs. We experiment on the real-world Track Anomaly (TA) dataset. The performance evaluation of DCNF on TA dataset achieves an impressive AUROC score of 98.49%, which is 3.74% higher than the second-best method.
ISSN:1424-8220