Integration and Fusion of Geologic Hazard Data under Deep Learning and Big Data Analysis Technology

To discuss the analysis and evaluation of highway landslides, the application of data mining methods combined with deep learning frameworks in geologic hazard evaluation and monitoring is explored preliminarily. On the premise of optimizing the processing of landslide images, first, the Blind/Refere...

Full description

Saved in:
Bibliographic Details
Main Authors: Feng He, Chunxue Liu, Hongjiang Liu
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2021/2871770
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To discuss the analysis and evaluation of highway landslides, the application of data mining methods combined with deep learning frameworks in geologic hazard evaluation and monitoring is explored preliminarily. On the premise of optimizing the processing of landslide images, first, the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) based on the natural statistical characteristics of the spatial domain is introduced, which is initially combined with Super-Resolution Convolutional Neural Network (SRCNN). Then, the AlexNet is fine-tuned and applied to highway landslide monitoring and surveying. Finally, an entropy weight gray clustering evaluation method based on data mining analysis is proposed, and the performances of several methods are verified. The results show that the average score of the BRISQUE algorithm in Image Quality Assessment (IQA) is above 0.9, and the average running time is 0.1523 s. The combination of BRISQUE and SRCNN can improve the image quality significantly. After fine-tuning, the recognition accuracy of AlexNet for landslide images can reach about 80%. The evaluation method based on gray clustering can effectively determine the correlation between soil moisture content and slope angle and thereby be applied to the analysis and evaluation of highway landslides. The results are beneficial to the judgment and assessment of highway landslide conditions, which can be extended to research on other geologic hazards.
ISSN:1076-2787
1099-0526