Existence of normalized solutions for a Sobolev supercritical Schrödinger equation

This paper studies the existence of normalized solutions for the following Schrödinger equation with Sobolev supercritical growth: \begin{document}$ \begin{equation*} \begin{cases} -\Delta u+V(x)u+\lambda u = f(u)+\mu |u|^{p-2}u, \quad &\hbox{in}\;\mathbb{R}^N,\\ \int_{\mathbb{R}^N}|u|^2dx = a...

Full description

Saved in:
Bibliographic Details
Main Authors: Quanqing Li, Zhipeng Yang
Format: Article
Language:English
Published: AIMS Press 2024-12-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2024316
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper studies the existence of normalized solutions for the following Schrödinger equation with Sobolev supercritical growth: \begin{document}$ \begin{equation*} \begin{cases} -\Delta u+V(x)u+\lambda u = f(u)+\mu |u|^{p-2}u, \quad &\hbox{in}\;\mathbb{R}^N,\\ \int_{\mathbb{R}^N}|u|^2dx = a^2, \end{cases} \end{equation*} $\end{document} where $ p > 2^*: = \frac{2N}{N-2} $, $ N\geq 3 $, $ a > 0 $, $ \lambda \in \mathbb{R} $ is an unknown Lagrange multiplier, $ V \in C(\mathbb{R}^N, \mathbb{R}) $, $ f $ satisfies weak mass subcritical conditions. By employing the truncation technique, we establish the existence of normalized solutions to this Sobolev supercritical problem. Our primary contribution lies in our initial exploration of the case $ p > 2^* $, which represents an unfixed frequency problem.
ISSN:2688-1594