CYP2E1 Sensitizes the Liver to LPS- and TNF α-Induced Toxicity via Elevated Oxidative and Nitrosative Stress and Activation of ASK-1 and JNK Mitogen-Activated Kinases

The mechanisms by which alcohol causes cell injury are not clear. A major mechanism is the role of lipid peroxidation and oxidative stress in alcohol toxicity. Many pathways have been suggested to play a role in how alcohol induces oxidative stress. Considerable attention has been given to alcohol e...

Full description

Saved in:
Bibliographic Details
Main Authors: Arthur I. Cederbaum, Lili Yang, Xiaodong Wang, Defeng Wu
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Hepatology
Online Access:http://dx.doi.org/10.1155/2012/582790
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanisms by which alcohol causes cell injury are not clear. A major mechanism is the role of lipid peroxidation and oxidative stress in alcohol toxicity. Many pathways have been suggested to play a role in how alcohol induces oxidative stress. Considerable attention has been given to alcohol elevated production of lipopolysaccharide (LPS) and TNFα and to alcohol induction of CYP2E1. These two pathways are not exclusive of each other; however, interactions between them, have not been extensively evaluated. Increased oxidative stress from induction of CYP2E1 sensitizes hepatocytes to LPS and TNFα toxicity and oxidants, activation of inducible nitric oxide synthase and p38 and JNK MAP kinases, and mitochondrial dysfunction are downstream mediators of this CYP2E1-LPS/TNFα-potentiated hepatotoxicity. This paper will summarize studies showing potentiated interactions between these two risk factors in promoting liver injury and the mechanisms involved including activation of the mitogen-activated kinase kinase kinase ASK-1. Decreasing either cytosolic or mitochondrial thioredoxin in HepG2 cells expressing CYP2E1 causes loss of cell viability and elevated oxidative stress via an ASK-1/JNK-dependent mechanism. We hypothesize that similar interactions occur as a result of ethanol induction of CYP2E1 and TNFα.
ISSN:2090-3448
2090-3456