Achieving Equity via Transfer Learning With Fairness Optimization
Machine learning algorithms are increasingly used in real-world decision-making systems, raising concerns about potential biases and unfairness. Existing in-processing bias mitigation approaches often focus on achieving numerical parity across demographic groups while neglecting the performance impa...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10804762/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|