A note on computing the generalized inverse A T,S (2) of a matrix A

The generalized inverse A T,S (2) of a matrix A is a {2}-inverse of A with the prescribed range T and null space S. A representation for the generalized inverse A T,S (2) has been recently developed with the condition σ (GA| T)⊂(0,∞), where G is a matrix with R(G)=T andN(G)=S. In this note, we remov...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiezhang Li, Yimin Wei
Format: Article
Language:English
Published: Wiley 2002-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171202013169
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The generalized inverse A T,S (2) of a matrix A is a {2}-inverse of A with the prescribed range T and null space S. A representation for the generalized inverse A T,S (2) has been recently developed with the condition σ (GA| T)⊂(0,∞), where G is a matrix with R(G)=T andN(G)=S. In this note, we remove the above condition. Three types of iterative methods for A T,S (2) are presented if σ(GA|T) is a subset of the open right half-plane and they are extensions of existing computational procedures of A T,S (2), including special cases such as the weighted Moore-Penrose inverse A M,N † and the Drazin inverse AD. Numerical examples are given to illustrate our results.
ISSN:0161-1712
1687-0425