PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma

Abstract Multiple Myeloma (MM) is a cytogenetically heterogeneous clonal plasma cell proliferative disease whose diagnosis is supported by analyses on histological slides of bone marrow aspirate. In summary, experts use a labor-intensive methodology to compute the ratio between plasma cells and non-...

Full description

Saved in:
Bibliographic Details
Main Authors: Caio L. B. Andrade, Marcos V. Ferreira, Brenno M. Alencar, Jorge L. S. B. Filho, Matheus A. Guimaraes, Iarley Porto Cruz Moraes, Tiago J. S. Lopes, Allan S. dos Santos, Mariane M. dos Santos, Maria I. C. S. e Silva, Izabela M. D. R. P. Rosa, Gilson C. de Carvalho, Herbert H. M. Santos, Márcia M. L. Santos, Roberto Meyer, Luciana M. P. B. Knop, Songeli M. Freire, Ricardo A. Rios, Tatiane N. Rios
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Data
Online Access:https://doi.org/10.1038/s41597-025-04459-1
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832572024367611904
author Caio L. B. Andrade
Marcos V. Ferreira
Brenno M. Alencar
Jorge L. S. B. Filho
Matheus A. Guimaraes
Iarley Porto Cruz Moraes
Tiago J. S. Lopes
Allan S. dos Santos
Mariane M. dos Santos
Maria I. C. S. e Silva
Izabela M. D. R. P. Rosa
Gilson C. de Carvalho
Herbert H. M. Santos
Márcia M. L. Santos
Roberto Meyer
Luciana M. P. B. Knop
Songeli M. Freire
Ricardo A. Rios
Tatiane N. Rios
author_facet Caio L. B. Andrade
Marcos V. Ferreira
Brenno M. Alencar
Jorge L. S. B. Filho
Matheus A. Guimaraes
Iarley Porto Cruz Moraes
Tiago J. S. Lopes
Allan S. dos Santos
Mariane M. dos Santos
Maria I. C. S. e Silva
Izabela M. D. R. P. Rosa
Gilson C. de Carvalho
Herbert H. M. Santos
Márcia M. L. Santos
Roberto Meyer
Luciana M. P. B. Knop
Songeli M. Freire
Ricardo A. Rios
Tatiane N. Rios
author_sort Caio L. B. Andrade
collection DOAJ
description Abstract Multiple Myeloma (MM) is a cytogenetically heterogeneous clonal plasma cell proliferative disease whose diagnosis is supported by analyses on histological slides of bone marrow aspirate. In summary, experts use a labor-intensive methodology to compute the ratio between plasma cells and non-plasma cells. Therefore, the key aspect of the methodology is identifying these cells, which relies on the experts’ attention and experience. In this work, we present a valuable dataset comprising more than 5,000 plasma and non-plasma cells, labeled by experts, along with some patient diagnostics. We also share a Deep Neural Network model, as a benchmark, trained to identify and count plasma and non-plasma cells automatically. The contributions of this work are two-fold: (i) the labeled cells can be used to train new practitioners and support continuing medical education; and (ii) the design of new methods to identify such cells, improving the results presented by our benchmark. We emphasize that our work supports the diagnosis of MM in practical scenarios and paves new ways to advance the state-of-the-art.
format Article
id doaj-art-ac5c213fa6bd42bdaaef6ba3c6ce2550
institution Kabale University
issn 2052-4463
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Scientific Data
spelling doaj-art-ac5c213fa6bd42bdaaef6ba3c6ce25502025-02-02T12:08:24ZengNature PortfolioScientific Data2052-44632025-01-0112111110.1038/s41597-025-04459-1PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple MyelomaCaio L. B. Andrade0Marcos V. Ferreira1Brenno M. Alencar2Jorge L. S. B. Filho3Matheus A. Guimaraes4Iarley Porto Cruz Moraes5Tiago J. S. Lopes6Allan S. dos Santos7Mariane M. dos Santos8Maria I. C. S. e Silva9Izabela M. D. R. P. Rosa10Gilson C. de Carvalho11Herbert H. M. Santos12Márcia M. L. Santos13Roberto Meyer14Luciana M. P. B. Knop15Songeli M. Freire16Ricardo A. Rios17Tatiane N. Rios18Federal University of Bahia, Institute of ComputingFederal University of Bahia, Institute of ComputingFederal University of Bahia, Institute of ComputingFederal University of Bahia, Institute of ComputingFederal University of Bahia, Institute of ComputingFederal University of Bahia, Institute of ComputingNezu Biotech GmbHFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Hospital Universitario Professor Edgard Santos - HUPESFederal University of Bahia, Institute of Health SciencesHospital Martagão Gesteira, LABCMI-HMGFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Institute of ComputingFederal University of Bahia, Institute of ComputingAbstract Multiple Myeloma (MM) is a cytogenetically heterogeneous clonal plasma cell proliferative disease whose diagnosis is supported by analyses on histological slides of bone marrow aspirate. In summary, experts use a labor-intensive methodology to compute the ratio between plasma cells and non-plasma cells. Therefore, the key aspect of the methodology is identifying these cells, which relies on the experts’ attention and experience. In this work, we present a valuable dataset comprising more than 5,000 plasma and non-plasma cells, labeled by experts, along with some patient diagnostics. We also share a Deep Neural Network model, as a benchmark, trained to identify and count plasma and non-plasma cells automatically. The contributions of this work are two-fold: (i) the labeled cells can be used to train new practitioners and support continuing medical education; and (ii) the design of new methods to identify such cells, improving the results presented by our benchmark. We emphasize that our work supports the diagnosis of MM in practical scenarios and paves new ways to advance the state-of-the-art.https://doi.org/10.1038/s41597-025-04459-1
spellingShingle Caio L. B. Andrade
Marcos V. Ferreira
Brenno M. Alencar
Jorge L. S. B. Filho
Matheus A. Guimaraes
Iarley Porto Cruz Moraes
Tiago J. S. Lopes
Allan S. dos Santos
Mariane M. dos Santos
Maria I. C. S. e Silva
Izabela M. D. R. P. Rosa
Gilson C. de Carvalho
Herbert H. M. Santos
Márcia M. L. Santos
Roberto Meyer
Luciana M. P. B. Knop
Songeli M. Freire
Ricardo A. Rios
Tatiane N. Rios
PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma
Scientific Data
title PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma
title_full PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma
title_fullStr PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma
title_full_unstemmed PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma
title_short PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma
title_sort pcmmd a novel dataset of plasma cells to support the diagnosis of multiple myeloma
url https://doi.org/10.1038/s41597-025-04459-1
work_keys_str_mv AT caiolbandrade pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT marcosvferreira pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT brennomalencar pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT jorgelsbfilho pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT matheusaguimaraes pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT iarleyportocruzmoraes pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT tiagojslopes pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT allansdossantos pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT marianemdossantos pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT mariaicsesilva pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT izabelamdrprosa pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT gilsoncdecarvalho pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT herberthmsantos pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT marciamlsantos pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT robertomeyer pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT lucianampbknop pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT songelimfreire pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT ricardoarios pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma
AT tatianenrios pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma