PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma
Abstract Multiple Myeloma (MM) is a cytogenetically heterogeneous clonal plasma cell proliferative disease whose diagnosis is supported by analyses on histological slides of bone marrow aspirate. In summary, experts use a labor-intensive methodology to compute the ratio between plasma cells and non-...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Scientific Data |
Online Access: | https://doi.org/10.1038/s41597-025-04459-1 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832572024367611904 |
---|---|
author | Caio L. B. Andrade Marcos V. Ferreira Brenno M. Alencar Jorge L. S. B. Filho Matheus A. Guimaraes Iarley Porto Cruz Moraes Tiago J. S. Lopes Allan S. dos Santos Mariane M. dos Santos Maria I. C. S. e Silva Izabela M. D. R. P. Rosa Gilson C. de Carvalho Herbert H. M. Santos Márcia M. L. Santos Roberto Meyer Luciana M. P. B. Knop Songeli M. Freire Ricardo A. Rios Tatiane N. Rios |
author_facet | Caio L. B. Andrade Marcos V. Ferreira Brenno M. Alencar Jorge L. S. B. Filho Matheus A. Guimaraes Iarley Porto Cruz Moraes Tiago J. S. Lopes Allan S. dos Santos Mariane M. dos Santos Maria I. C. S. e Silva Izabela M. D. R. P. Rosa Gilson C. de Carvalho Herbert H. M. Santos Márcia M. L. Santos Roberto Meyer Luciana M. P. B. Knop Songeli M. Freire Ricardo A. Rios Tatiane N. Rios |
author_sort | Caio L. B. Andrade |
collection | DOAJ |
description | Abstract Multiple Myeloma (MM) is a cytogenetically heterogeneous clonal plasma cell proliferative disease whose diagnosis is supported by analyses on histological slides of bone marrow aspirate. In summary, experts use a labor-intensive methodology to compute the ratio between plasma cells and non-plasma cells. Therefore, the key aspect of the methodology is identifying these cells, which relies on the experts’ attention and experience. In this work, we present a valuable dataset comprising more than 5,000 plasma and non-plasma cells, labeled by experts, along with some patient diagnostics. We also share a Deep Neural Network model, as a benchmark, trained to identify and count plasma and non-plasma cells automatically. The contributions of this work are two-fold: (i) the labeled cells can be used to train new practitioners and support continuing medical education; and (ii) the design of new methods to identify such cells, improving the results presented by our benchmark. We emphasize that our work supports the diagnosis of MM in practical scenarios and paves new ways to advance the state-of-the-art. |
format | Article |
id | doaj-art-ac5c213fa6bd42bdaaef6ba3c6ce2550 |
institution | Kabale University |
issn | 2052-4463 |
language | English |
publishDate | 2025-01-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Data |
spelling | doaj-art-ac5c213fa6bd42bdaaef6ba3c6ce25502025-02-02T12:08:24ZengNature PortfolioScientific Data2052-44632025-01-0112111110.1038/s41597-025-04459-1PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple MyelomaCaio L. B. Andrade0Marcos V. Ferreira1Brenno M. Alencar2Jorge L. S. B. Filho3Matheus A. Guimaraes4Iarley Porto Cruz Moraes5Tiago J. S. Lopes6Allan S. dos Santos7Mariane M. dos Santos8Maria I. C. S. e Silva9Izabela M. D. R. P. Rosa10Gilson C. de Carvalho11Herbert H. M. Santos12Márcia M. L. Santos13Roberto Meyer14Luciana M. P. B. Knop15Songeli M. Freire16Ricardo A. Rios17Tatiane N. Rios18Federal University of Bahia, Institute of ComputingFederal University of Bahia, Institute of ComputingFederal University of Bahia, Institute of ComputingFederal University of Bahia, Institute of ComputingFederal University of Bahia, Institute of ComputingFederal University of Bahia, Institute of ComputingNezu Biotech GmbHFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Hospital Universitario Professor Edgard Santos - HUPESFederal University of Bahia, Institute of Health SciencesHospital Martagão Gesteira, LABCMI-HMGFederal University of Bahia, Institute of Health SciencesFederal University of Bahia, Institute of ComputingFederal University of Bahia, Institute of ComputingAbstract Multiple Myeloma (MM) is a cytogenetically heterogeneous clonal plasma cell proliferative disease whose diagnosis is supported by analyses on histological slides of bone marrow aspirate. In summary, experts use a labor-intensive methodology to compute the ratio between plasma cells and non-plasma cells. Therefore, the key aspect of the methodology is identifying these cells, which relies on the experts’ attention and experience. In this work, we present a valuable dataset comprising more than 5,000 plasma and non-plasma cells, labeled by experts, along with some patient diagnostics. We also share a Deep Neural Network model, as a benchmark, trained to identify and count plasma and non-plasma cells automatically. The contributions of this work are two-fold: (i) the labeled cells can be used to train new practitioners and support continuing medical education; and (ii) the design of new methods to identify such cells, improving the results presented by our benchmark. We emphasize that our work supports the diagnosis of MM in practical scenarios and paves new ways to advance the state-of-the-art.https://doi.org/10.1038/s41597-025-04459-1 |
spellingShingle | Caio L. B. Andrade Marcos V. Ferreira Brenno M. Alencar Jorge L. S. B. Filho Matheus A. Guimaraes Iarley Porto Cruz Moraes Tiago J. S. Lopes Allan S. dos Santos Mariane M. dos Santos Maria I. C. S. e Silva Izabela M. D. R. P. Rosa Gilson C. de Carvalho Herbert H. M. Santos Márcia M. L. Santos Roberto Meyer Luciana M. P. B. Knop Songeli M. Freire Ricardo A. Rios Tatiane N. Rios PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma Scientific Data |
title | PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma |
title_full | PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma |
title_fullStr | PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma |
title_full_unstemmed | PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma |
title_short | PCMMD: A Novel Dataset of Plasma Cells to Support the Diagnosis of Multiple Myeloma |
title_sort | pcmmd a novel dataset of plasma cells to support the diagnosis of multiple myeloma |
url | https://doi.org/10.1038/s41597-025-04459-1 |
work_keys_str_mv | AT caiolbandrade pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT marcosvferreira pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT brennomalencar pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT jorgelsbfilho pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT matheusaguimaraes pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT iarleyportocruzmoraes pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT tiagojslopes pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT allansdossantos pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT marianemdossantos pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT mariaicsesilva pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT izabelamdrprosa pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT gilsoncdecarvalho pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT herberthmsantos pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT marciamlsantos pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT robertomeyer pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT lucianampbknop pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT songelimfreire pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT ricardoarios pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma AT tatianenrios pcmmdanoveldatasetofplasmacellstosupportthediagnosisofmultiplemyeloma |