Identification of digital twins to guide interpretable AI for diagnosis and prognosis in heart failure
Abstract Heart failure (HF) is a highly heterogeneous condition, and current methods struggle to synthesize extensive clinical data for personalized care. Using data from 343 HF patients, we developed mechanistic computational models of the cardiovascular system to create digital twins. These twins,...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-02-01
|
| Series: | npj Digital Medicine |
| Online Access: | https://doi.org/10.1038/s41746-025-01501-9 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|