Complete Self-Shrinking Solutions for Lagrangian Mean Curvature Flow in Pseudo-Euclidean Space

Let f(x) be a smooth strictly convex solution of det(∂2f/∂xi∂xj)=exp(1/2)∑i=1nxi(∂f/∂xi)-f defined on a domain Ω⊂Rn; then the graph M∇f of ∇f is a space-like self-shrinker of mean curvature flow in Pseudo-Euclidean space Rn2n with the indefinite metric ∑dxidyi. In this paper, we prove a Bernstein th...

Full description

Saved in:
Bibliographic Details
Main Authors: Ruiwei Xu, Linfen Cao
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/196751
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562492620931072
author Ruiwei Xu
Linfen Cao
author_facet Ruiwei Xu
Linfen Cao
author_sort Ruiwei Xu
collection DOAJ
description Let f(x) be a smooth strictly convex solution of det(∂2f/∂xi∂xj)=exp(1/2)∑i=1nxi(∂f/∂xi)-f defined on a domain Ω⊂Rn; then the graph M∇f of ∇f is a space-like self-shrinker of mean curvature flow in Pseudo-Euclidean space Rn2n with the indefinite metric ∑dxidyi. In this paper, we prove a Bernstein theorem for complete self-shrinkers. As a corollary, we obtain if the Lagrangian graph M∇f is complete in Rn2n and passes through the origin then it is flat.
format Article
id doaj-art-ab64741bdffa4bdc8b77b37a0c9a5099
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-ab64741bdffa4bdc8b77b37a0c9a50992025-02-03T01:22:28ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/196751196751Complete Self-Shrinking Solutions for Lagrangian Mean Curvature Flow in Pseudo-Euclidean SpaceRuiwei Xu0Linfen Cao1Department of Mathematics, Henan Normal University, Xinxiang, Henan 453007, ChinaDepartment of Mathematics, Henan Normal University, Xinxiang, Henan 453007, ChinaLet f(x) be a smooth strictly convex solution of det(∂2f/∂xi∂xj)=exp(1/2)∑i=1nxi(∂f/∂xi)-f defined on a domain Ω⊂Rn; then the graph M∇f of ∇f is a space-like self-shrinker of mean curvature flow in Pseudo-Euclidean space Rn2n with the indefinite metric ∑dxidyi. In this paper, we prove a Bernstein theorem for complete self-shrinkers. As a corollary, we obtain if the Lagrangian graph M∇f is complete in Rn2n and passes through the origin then it is flat.http://dx.doi.org/10.1155/2014/196751
spellingShingle Ruiwei Xu
Linfen Cao
Complete Self-Shrinking Solutions for Lagrangian Mean Curvature Flow in Pseudo-Euclidean Space
Abstract and Applied Analysis
title Complete Self-Shrinking Solutions for Lagrangian Mean Curvature Flow in Pseudo-Euclidean Space
title_full Complete Self-Shrinking Solutions for Lagrangian Mean Curvature Flow in Pseudo-Euclidean Space
title_fullStr Complete Self-Shrinking Solutions for Lagrangian Mean Curvature Flow in Pseudo-Euclidean Space
title_full_unstemmed Complete Self-Shrinking Solutions for Lagrangian Mean Curvature Flow in Pseudo-Euclidean Space
title_short Complete Self-Shrinking Solutions for Lagrangian Mean Curvature Flow in Pseudo-Euclidean Space
title_sort complete self shrinking solutions for lagrangian mean curvature flow in pseudo euclidean space
url http://dx.doi.org/10.1155/2014/196751
work_keys_str_mv AT ruiweixu completeselfshrinkingsolutionsforlagrangianmeancurvatureflowinpseudoeuclideanspace
AT linfencao completeselfshrinkingsolutionsforlagrangianmeancurvatureflowinpseudoeuclideanspace