New Bounds on 2-Frameproof Codes of Length 4

Frameproof codes were first introduced by Boneh and Shaw in 1998 in the context of digital fingerprinting to protect copyrighted materials. These digital fingerprints are generally denoted as codewords in Qn, where Q is an alphabet of size q and n is a positive integer. A 2-frameproof code is a code...

Full description

Saved in:
Bibliographic Details
Main Author: Penying Rochanakul
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2020/4879108
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Frameproof codes were first introduced by Boneh and Shaw in 1998 in the context of digital fingerprinting to protect copyrighted materials. These digital fingerprints are generally denoted as codewords in Qn, where Q is an alphabet of size q and n is a positive integer. A 2-frameproof code is a code C such that any 2 codewords in C cannot form a new codeword under a particular rule. Thus, no pair of users can frame a user who is not a member of the coalition. This paper concentrates on the upper bound for the size of a q-ary 2-frameproof code of length 4. Our new upper bound shows that C≤2q2−2q+1 when q is odd and q>10.
ISSN:0161-1712
1687-0425