New Bounds on 2-Frameproof Codes of Length 4
Frameproof codes were first introduced by Boneh and Shaw in 1998 in the context of digital fingerprinting to protect copyrighted materials. These digital fingerprints are generally denoted as codewords in Qn, where Q is an alphabet of size q and n is a positive integer. A 2-frameproof code is a code...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2020/4879108 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Frameproof codes were first introduced by Boneh and Shaw in 1998 in the context of digital fingerprinting to protect copyrighted materials. These digital fingerprints are generally denoted as codewords in Qn, where Q is an alphabet of size q and n is a positive integer. A 2-frameproof code is a code C such that any 2 codewords in C cannot form a new codeword under a particular rule. Thus, no pair of users can frame a user who is not a member of the coalition. This paper concentrates on the upper bound for the size of a q-ary 2-frameproof code of length 4. Our new upper bound shows that C≤2q2−2q+1 when q is odd and q>10. |
---|---|
ISSN: | 0161-1712 1687-0425 |