Deterministic Annealing Approach to Fuzzy C-Means Clustering Based on Entropy Maximization

This paper is dealing with the fuzzy clustering method which combines the deterministic annealing (DA) approach with an entropy, especially the Shannon entropy and the Tsallis entropy. By maximizing the Shannon entropy, the fuzzy entropy, or the Tsallis entropy within the framework of the fuzzy c-me...

Full description

Saved in:
Bibliographic Details
Main Author: Makoto Yasuda
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Advances in Fuzzy Systems
Online Access:http://dx.doi.org/10.1155/2011/960635
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is dealing with the fuzzy clustering method which combines the deterministic annealing (DA) approach with an entropy, especially the Shannon entropy and the Tsallis entropy. By maximizing the Shannon entropy, the fuzzy entropy, or the Tsallis entropy within the framework of the fuzzy c-means (FCM) method, membership functions similar to the statistical mechanical distribution functions are obtained. We examine characteristics of these entropy-based membership functions from the statistical mechanical point of view. After that, both the Shannon- and Tsallis-entropy-based FCMs are formulated as DA clustering using the very fast annealing (VFA) method as a cooling schedule. Experimental results indicate that the Tsallis-entropy-based FCM is stable with very fast deterministic annealing and suitable for this annealing process.
ISSN:1687-7101
1687-711X