The Relationship Between Foot Anthropometrics, Lower-Extremity Kinematics, and Ground Reaction Force in Elite Female Basketball Players: An Exploratory Study Investigating Arch Height Index and Navicular Drop
Static and dynamic foot function can be evaluated using easy-to-implement, low-cost measurements like arch height index (AHI) and navicular drop (ND). Connections between AHI/ND and lower-extremity kinematics/kinetics have largely focused on gait. Some studies exist evaluating basketball players; ho...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Biomechanics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2673-7078/4/4/55 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Static and dynamic foot function can be evaluated using easy-to-implement, low-cost measurements like arch height index (AHI) and navicular drop (ND). Connections between AHI/ND and lower-extremity kinematics/kinetics have largely focused on gait. Some studies exist evaluating basketball players; however, these predominantly focus on men. To our knowledge, few studies evaluate female athletes, and none have investigated connections between AHI/ND and lower-extremity biomechanics in elite female basketball players. Thus, we conducted an IRB-approved observational investigation of 10 female, National Collegiate Athletic Association (NCAA) Division 1 basketball players, evaluating connections between AHI/ND and lower-extremity biomechanics during basketball activities. Participants completed one visit wherein bilateral AHI/ND measurements and kinematics/kinetics were captured via optical motion capture and force-instrumented treadmill during basketball activities (walking, running, vertical/horizontal jumping, side shuffles, 45° cuts). No connections existed between the AHI and any variable during any task. Contrastingly, ND was statistically significantly correlated with medial/lateral force maximum and range during left cutting. This implies that individuals with stiffer feet produced more side-to-side force than those with more foot mobility during cutting. This is the first report connecting ND to lower-extremity biomechanics in elite, female basketball players. This could inform novel interventions and technologies to improve frontal kinematics/kinetics. |
|---|---|
| ISSN: | 2673-7078 |