Active stabilization of a chaotic urban system

A new method to stabilize dynamical systems by forcing the system variables into the desired unstable stationary point is proposed. The key conception of the method is based on parametric perturbation. This means that the equations of motion are influenced by continuous variation of some selected pa...

Full description

Saved in:
Bibliographic Details
Main Authors: Günter Haag, Tilo Hagel, Timm Sigg
Format: Article
Language:English
Published: Wiley 1997-01-01
Series:Discrete Dynamics in Nature and Society
Subjects:
Online Access:http://dx.doi.org/10.1155/S1026022697000137
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new method to stabilize dynamical systems by forcing the system variables into the desired unstable stationary point is proposed. The key conception of the method is based on parametric perturbation. This means that the equations of motion are influenced by continuous variation of some selected parameters. Thus – without using any external forces – the motion of the system approaches the chosen unstable stationary point. The variation of the parameters will vanish after the successful stabilization. Therefore, the system and its parameters are changed during the control process only. The algorithm is applied to an urban system within a metropolitan area obeying a Lorenz-type dynamics as well as to the Hénon attractor as an example for a discrete scenario.
ISSN:1026-0226
1607-887X