Sliding Mode Control for Robust Path Tracking of Automated Vehicles in Rural Environments

Achieving robust path tracking is essential for efficiently operating autonomous driving systems, particularly in unpredictable environments. This paper introduces a novel path-tracking control methodology utilizing a variable second-order Sliding Mode Control (SMC) approach. The proposed control st...

Full description

Saved in:
Bibliographic Details
Main Authors: Jose Matute, Sergio Diaz, Ali Karimoddini
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Open Journal of Vehicular Technology
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10669799/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Achieving robust path tracking is essential for efficiently operating autonomous driving systems, particularly in unpredictable environments. This paper introduces a novel path-tracking control methodology utilizing a variable second-order Sliding Mode Control (SMC) approach. The proposed control strategy addresses the challenges posed by uncertainties and disturbances by reconfiguring and expanding the state-space matrix of a kinematic bicycle model guaranteeing Lyapunov stability and convergence of the system. A state prediction is integrated into the developed SMC to mitigate response time delays. Furthermore, the controller integrates adaptive mechanisms to adjust time-varying parameters within the control formulation based on longitudinal velocity, thereby enhancing path-tracking performance and reducing chattering phenomena. The effectiveness of the proposed approach is comprehensively evaluated through simulations and experiments encompassing challenging driving scenarios characterized by high-curvature paths, varying altitudes, and sensor disturbances, typical in rural driving environments. Results demonstrate that disturbances have varying impacts depending on the type of sensor affected. Real-world tests validate these findings, offering practical insights for automated vehicle path-tracking implementation.
ISSN:2644-1330