Insulator Defect Detection Algorithm Based on Improved YOLOv11n

Ensuring the reliability and safety of electrical power systems requires the efficient detection of defects in high-voltage transmission line insulators, which play a critical role in electrical isolation and mechanical support. Environmental factors often lead to insulator defects, highlighting the...

Full description

Saved in:
Bibliographic Details
Main Authors: Junmei Zhao, Shangxiao Miao, Rui Kang, Longkun Cao, Liping Zhang, Yifeng Ren
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/5/1327
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ensuring the reliability and safety of electrical power systems requires the efficient detection of defects in high-voltage transmission line insulators, which play a critical role in electrical isolation and mechanical support. Environmental factors often lead to insulator defects, highlighting the need for accurate detection methods. This paper proposes an enhanced defect detection approach based on a lightweight neural network derived from the YOLOv11n architecture. Key innovations include a redesigned C3k2 module that incorporates multidimensional dynamic convolutions (ODConv) for improved feature extraction, the introduction of Slimneck to reduce model complexity and computational cost, and the application of the WIoU loss function to optimize anchor box handling and to accelerate convergence. Experimental results demonstrate that the proposed method outperforms existing models like YOLOv8 and YOLOv10 in precision, recall, and mean average precision (mAP), while maintaining low computational complexity. This approach provides a promising solution for real-time, high-accuracy insulator defect detection, enhancing the safety and reliability of power transmission systems.
ISSN:1424-8220