Eigenvalue Spectrum and Synchronizability of Two Types of Double-Layer Star-Ring Networks with Hybrid Directional Coupling
In this study, we studied the eigenvalue spectrum and synchronizability of two types of double-layer hybrid directionally coupled star-ring networks, namely, the double-layer star-ring networks with the leaf node pointing to the hub node (Network I) and the double-layer star-ring networks with the h...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2021/6623648 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we studied the eigenvalue spectrum and synchronizability of two types of double-layer hybrid directionally coupled star-ring networks, namely, the double-layer star-ring networks with the leaf node pointing to the hub node (Network I) and the double-layer star-ring networks with the hub node pointing to the leaf node (Network II). We strictly derived the eigenvalue spectrum of the supra-Laplacian matrix of these two types of networks and analyzed the relationship between the synchronizability and the structural parameters of networks based on the master stability function theory. Furthermore, the correctness of the theoretical results was verified through numerical simulations, and the optimum structural parameters were obtained to achieve the optimal synchronizability. |
---|---|
ISSN: | 1026-0226 1607-887X |