Contingency-Constrained Optimal Power Flow Using Simplex-Based Chaotic-PSO Algorithm

This paper proposes solving contingency-constrained optimal power flow (CC-OPF) by a simplex-based chaotic particle swarm optimization (SCPSO). The associated objective of CC-OPF with the considered valve-point loading effects of generators is to minimize the total generation cost, to reduce transmi...

Full description

Saved in:
Bibliographic Details
Main Authors: Zwe-Lee Gaing, Chia-Hung Lin
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Applied Computational Intelligence and Soft Computing
Online Access:http://dx.doi.org/10.1155/2011/942672
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes solving contingency-constrained optimal power flow (CC-OPF) by a simplex-based chaotic particle swarm optimization (SCPSO). The associated objective of CC-OPF with the considered valve-point loading effects of generators is to minimize the total generation cost, to reduce transmission loss, and to improve the bus-voltage profile under normal or postcontingent states. The proposed SCPSO method, which involves the chaotic map and the downhill simplex search, can avoid the premature convergence of PSO and escape local minima. The effectiveness of the proposed method is demonstrated in two power systems with contingency constraints and compared with other stochastic techniques in terms of solution quality and convergence rate. The experimental results show that the SCPSO-based CC-OPF method has suitable mutation schemes, thus showing robustness and effectiveness in solving contingency-constrained OPF problems.
ISSN:1687-9724
1687-9732