System Identification of a Servo-Valve Controlled Hydraulic Cylinder Operating Under Variable Load
This work presents an in-depth study on the system identification of a servo-valve controlled hydraulic cylinder operating under variable load. This research addresses the growing demand for improved control systems (enhancing time response, settling time, and precision) in variable load hydraulic a...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/3/341 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This work presents an in-depth study on the system identification of a servo-valve controlled hydraulic cylinder operating under variable load. This research addresses the growing demand for improved control systems (enhancing time response, settling time, and precision) in variable load hydraulic actuators, such as those used in blade pitching systems of wind turbines. The paper begins by detailing the experimental setup, followed by the development of the system’s mathematical model, a fourth-order transfer function (TF). The experimental data collected by a proposed data acquisition system are used for the dynamic identification of the hydraulic setup using periodical signals as commands. All possible combinations of TFs up to order 8 are identified. After an initial visual preselection of the 15 most accurate ones, analyses comparing quality indicators between the measured (experimental) and the TF (simulated) step and sinusoidal responses are conducted to determine the most accurate TF. The paper concludes with the presentation and analysis of the dynamic model, identified as being a fourth-order TF, which replicates the system dynamics with the greatest fidelity. It provides an identification methodology with significant potential for industry practitioners aiming to improve, optimize, and enhance control strategies for variable load hydraulic actuators. |
|---|---|
| ISSN: | 2227-7390 |