An Unconditionally Stable Positivity-Preserving Scheme for the One-Dimensional Fisher–Kolmogorov–Petrovsky–Piskunov Equation
In this study, we present an unconditionally stable positivity-preserving numerical method for the Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) equation in the one-dimensional space. The Fisher–KPP equation is a reaction-diffusion system that can be used to model population growth and wave prop...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2021/7300471 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we present an unconditionally stable positivity-preserving numerical method for the Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) equation in the one-dimensional space. The Fisher–KPP equation is a reaction-diffusion system that can be used to model population growth and wave propagation. The proposed method is based on the operator splitting method and an interpolation method. We perform several characteristic numerical experiments. The computational results demonstrate the unconditional stability, boundedness, and positivity-preserving properties of the proposed scheme. |
---|---|
ISSN: | 1026-0226 1607-887X |