An Unconditionally Stable Positivity-Preserving Scheme for the One-Dimensional Fisher–Kolmogorov–Petrovsky–Piskunov Equation

In this study, we present an unconditionally stable positivity-preserving numerical method for the Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) equation in the one-dimensional space. The Fisher–KPP equation is a reaction-diffusion system that can be used to model population growth and wave prop...

Full description

Saved in:
Bibliographic Details
Main Authors: Sangkwon Kim, Chaeyoung Lee, Hyun Geun Lee, Hyundong Kim, Soobin Kwak, Youngjin Hwang, Seungyoon Kang, Seokjun Ham, Junseok Kim
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2021/7300471
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we present an unconditionally stable positivity-preserving numerical method for the Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) equation in the one-dimensional space. The Fisher–KPP equation is a reaction-diffusion system that can be used to model population growth and wave propagation. The proposed method is based on the operator splitting method and an interpolation method. We perform several characteristic numerical experiments. The computational results demonstrate the unconditional stability, boundedness, and positivity-preserving properties of the proposed scheme.
ISSN:1026-0226
1607-887X