A distributional reinforcement learning model for optimal glucose control after cardiac surgery

Abstract This study introduces Glucose Level Understanding and Control Optimized for Safety and Efficacy (GLUCOSE), a distributional offline reinforcement learning algorithm for optimizing insulin dosing after cardiac surgery. Trained on 5228 patients, tested on 920, and externally validated on 649,...

Full description

Saved in:
Bibliographic Details
Main Authors: Jacob M. Desman, Zhang-Wei Hong, Moein Sabounchi, Ashwin S. Sawant, Jaskirat Gill, Ana C. Costa, Gagan Kumar, Rajeev Sharma, Arpeta Gupta, Paul McCarthy, Veena Nandwani, Doug Powell, Alexandra Carideo, Donnie Goodwin, Sanam Ahmed, Umesh Gidwani, Matthew A. Levin, Robin Varghese, Farzan Filsoufi, Robert Freeman, Avniel Shetreat-Klein, Alexander W. Charney, Ira Hofer, Lili Chan, David Reich, Patricia Kovatch, Roopa Kohli-Seth, Monica Kraft, Pulkit Agrawal, John A. Kellum, Girish N. Nadkarni, Ankit Sakhuja
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-025-01709-9
Tags: Add Tag
No Tags, Be the first to tag this record!