Fatigue Crack Propagation Behavior of RC Beams Strengthened with CFRP under High Temperature and High Humidity Environment
Numerical and experimental methods were applied to investigate fatigue crack propagation behavior of reinforced concrete (RC) beams strengthened with a new type carbon fiber reinforced polymer (CFRP) named as carbon fiber laminate (CFL) subjected to hot-wet environment. J-integral of a central crack...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | International Journal of Polymer Science |
Online Access: | http://dx.doi.org/10.1155/2017/1247949 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Numerical and experimental methods were applied to investigate fatigue crack propagation behavior of reinforced concrete (RC) beams strengthened with a new type carbon fiber reinforced polymer (CFRP) named as carbon fiber laminate (CFL) subjected to hot-wet environment. J-integral of a central crack in the strengthened beam under three-point bending load was calculated by ABAQUS. In finite element model, simulation of CFL-concrete interface was based on the bilinear cohesive zone model under hot-wet environment and indoor atmosphere. And, then, fatigue crack propagation tests were carried out under high temperature and high humidity (50°C, 95% R · H) environment pretreatment and indoor atmosphere (23°C, 78% R · H) to obtain a-N curves and crack propagation rate, da/dN, of the strengthened beams. Paris-Erdogan formula was developed based on the numerical analysis and environmental fatigue tests. |
---|---|
ISSN: | 1687-9422 1687-9430 |