Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors

Abstract Complementary transistors are critical for circuits with compatible input/output signal dynamic range and polarity. Organic electronics offer biocompatibility and conformability; however, generation of complementary organic transistors requires introduction of separate materials with inadeq...

Full description

Saved in:
Bibliographic Details
Main Authors: Duncan J. Wisniewski, Liang Ma, Onni J. Rauhala, Claudia Cea, Zifang Zhao, Alexander Ranschaert, Jennifer N. Gelinas, Dion Khodagholy
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55284-w
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832585582791884800
author Duncan J. Wisniewski
Liang Ma
Onni J. Rauhala
Claudia Cea
Zifang Zhao
Alexander Ranschaert
Jennifer N. Gelinas
Dion Khodagholy
author_facet Duncan J. Wisniewski
Liang Ma
Onni J. Rauhala
Claudia Cea
Zifang Zhao
Alexander Ranschaert
Jennifer N. Gelinas
Dion Khodagholy
author_sort Duncan J. Wisniewski
collection DOAJ
description Abstract Complementary transistors are critical for circuits with compatible input/output signal dynamic range and polarity. Organic electronics offer biocompatibility and conformability; however, generation of complementary organic transistors requires introduction of separate materials with inadequate stability and potential for tissue toxicity, limiting their use in biomedical applications. Here, we discovered that introduction of source/drain contact asymmetry enables spatial control of de/doping and creation of single-material complementary organic transistors from a variety of conducting polymers of both carrier types. When integrated with the vertical channel design and internal ion reservoirs of internal ion-gated organic electrochemical transistors, we produced matched complementary IGTs (cIGTs) that formed high-performance conformable amplifiers with 200 V/V uniform gain and 2 MHz bandwidth. These amplifiers showed long-term in vivo stability, and their miniaturized biocompatible design allowed implantation in developing rodents to monitor network maturation. cIGTs expand the use of organic electronics in standard circuit designs and enhance their biomedical potential.
format Article
id doaj-art-a589e931f288499ea2d907e37ba998ce
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-a589e931f288499ea2d907e37ba998ce2025-01-26T12:41:05ZengNature PortfolioNature Communications2041-17232025-01-0116111210.1038/s41467-024-55284-wSpatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistorsDuncan J. Wisniewski0Liang Ma1Onni J. Rauhala2Claudia Cea3Zifang Zhao4Alexander Ranschaert5Jennifer N. Gelinas6Dion Khodagholy7Department of Electrical Engineering, University of CaliforniaDepartment of Biomedical Engineering, Columbia UniversityDepartment of Electrical Engineering, Columbia UniversityDepartment of Electrical Engineering, Columbia UniversityDepartment of Electrical Engineering, Columbia UniversityDepartment of Electrical Engineering, Columbia UniversityDepartment of Biomedical Engineering, Columbia UniversityDepartment of Electrical Engineering, University of CaliforniaAbstract Complementary transistors are critical for circuits with compatible input/output signal dynamic range and polarity. Organic electronics offer biocompatibility and conformability; however, generation of complementary organic transistors requires introduction of separate materials with inadequate stability and potential for tissue toxicity, limiting their use in biomedical applications. Here, we discovered that introduction of source/drain contact asymmetry enables spatial control of de/doping and creation of single-material complementary organic transistors from a variety of conducting polymers of both carrier types. When integrated with the vertical channel design and internal ion reservoirs of internal ion-gated organic electrochemical transistors, we produced matched complementary IGTs (cIGTs) that formed high-performance conformable amplifiers with 200 V/V uniform gain and 2 MHz bandwidth. These amplifiers showed long-term in vivo stability, and their miniaturized biocompatible design allowed implantation in developing rodents to monitor network maturation. cIGTs expand the use of organic electronics in standard circuit designs and enhance their biomedical potential.https://doi.org/10.1038/s41467-024-55284-w
spellingShingle Duncan J. Wisniewski
Liang Ma
Onni J. Rauhala
Claudia Cea
Zifang Zhao
Alexander Ranschaert
Jennifer N. Gelinas
Dion Khodagholy
Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors
Nature Communications
title Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors
title_full Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors
title_fullStr Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors
title_full_unstemmed Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors
title_short Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors
title_sort spatial control of doping in conducting polymers enables complementary conformable implantable internal ion gated organic electrochemical transistors
url https://doi.org/10.1038/s41467-024-55284-w
work_keys_str_mv AT duncanjwisniewski spatialcontrolofdopinginconductingpolymersenablescomplementaryconformableimplantableinternaliongatedorganicelectrochemicaltransistors
AT liangma spatialcontrolofdopinginconductingpolymersenablescomplementaryconformableimplantableinternaliongatedorganicelectrochemicaltransistors
AT onnijrauhala spatialcontrolofdopinginconductingpolymersenablescomplementaryconformableimplantableinternaliongatedorganicelectrochemicaltransistors
AT claudiacea spatialcontrolofdopinginconductingpolymersenablescomplementaryconformableimplantableinternaliongatedorganicelectrochemicaltransistors
AT zifangzhao spatialcontrolofdopinginconductingpolymersenablescomplementaryconformableimplantableinternaliongatedorganicelectrochemicaltransistors
AT alexanderranschaert spatialcontrolofdopinginconductingpolymersenablescomplementaryconformableimplantableinternaliongatedorganicelectrochemicaltransistors
AT jenniferngelinas spatialcontrolofdopinginconductingpolymersenablescomplementaryconformableimplantableinternaliongatedorganicelectrochemicaltransistors
AT dionkhodagholy spatialcontrolofdopinginconductingpolymersenablescomplementaryconformableimplantableinternaliongatedorganicelectrochemicaltransistors