An Extension of a result of Csiszar

We extend the results of Csiszar (Z. Wahr. 5(1966) 279-295) to a topological semigroup S. Let μ be a measure defined on S. We consider the value of α=supKcompactlimn→∞supx∈Sμn(Kx−1). First. we show that the value of α is either zero or one. If α=1, we show that there exists a sequence of elements {a...

Full description

Saved in:
Bibliographic Details
Main Author: P. B. Cerrito
Format: Article
Language:English
Published: Wiley 1986-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171286000042
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We extend the results of Csiszar (Z. Wahr. 5(1966) 279-295) to a topological semigroup S. Let μ be a measure defined on S. We consider the value of α=supKcompactlimn→∞supx∈Sμn(Kx−1). First. we show that the value of α is either zero or one. If α=1, we show that there exists a sequence of elements {an} In S such that μn∗δan converges vaguely to a probability measure where δ denotes point mass. In particular, we apply the results to inverse and matrix semigroups.
ISSN:0161-1712
1687-0425