Gateaux Differentiability of Convex Functions and Weak Dentable Set in Nonseparable Banach Spaces
In this paper, we prove that if C⁎⁎ is a ε-separable bounded subset of X⁎⁎, then every convex function g≤σC is Ga^teaux differentiable at a dense Gδ subset G of X⁎ if and only if every subset of ∂σC(0)∩X is weakly dentable. Moreover, we also prove that if C is a closed convex set, then dσC(x⁎)=x if...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2019/6852859 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|