Combining DBN and FCM for Fault Diagnosis of Roller Element Bearings without Using Data Labels

Because deep belief networks (DBNs) in deep learning have a powerful ability to extract useful information from the raw data without prior knowledge, DBNs are used to extract the useful feature from the roller bearings vibration signals. Unlike classification methods, the clustering method can class...

Full description

Saved in:
Bibliographic Details
Main Authors: Fan Xu, Yan jun Fang, Dong Wang, Jia qi Liang, Kwok Leung Tsui
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2018/3059230
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Because deep belief networks (DBNs) in deep learning have a powerful ability to extract useful information from the raw data without prior knowledge, DBNs are used to extract the useful feature from the roller bearings vibration signals. Unlike classification methods, the clustering method can classify the different fault types without data label. Therefore, a method based on deep belief networks (DBNs) in deep learning (DL) and fuzzy C-means (FCM) clustering algorithm for roller bearings fault diagnosis without a data label is presented in this paper. Firstly, the roller bearings vibration signals are extracted by using DBN, and then principal component analysis (PCA) is used to reduce the dimension of the vibration signal features. Secondly, the first two principal components (PCs) are selected as the input of fuzzy C-means (FCM) for roller bearings fault identification. Finally, the experimental results show that the fault diagnosis of the method presented is better than that of other combination models, such as variation mode decomposition- (VMD-) singular value decomposition- (SVD-) FCM, and ensemble empirical mode decomposition- (EEMD-) fuzzy entropy- (FE-) PCA-FCM.
ISSN:1070-9622
1875-9203