Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression
The levels of circulating microparticles (MPs) are raised in various cardiovascular diseases. Their increased level in plasma is regarded as a biomarker of alteration in vascular function. The prominent MPs present in blood are endothelial microparticles (EMPs) described as complex submicron (0.1 to...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | Scientifica |
Online Access: | http://dx.doi.org/10.1155/2016/8514056 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832560959096356864 |
---|---|
author | Keshav Raj Paudel Nisha Panth Dong-Wook Kim |
author_facet | Keshav Raj Paudel Nisha Panth Dong-Wook Kim |
author_sort | Keshav Raj Paudel |
collection | DOAJ |
description | The levels of circulating microparticles (MPs) are raised in various cardiovascular diseases. Their increased level in plasma is regarded as a biomarker of alteration in vascular function. The prominent MPs present in blood are endothelial microparticles (EMPs) described as complex submicron (0.1 to 1.0 μm) vesicles like structure, released in response to endothelium cell activation or apoptosis. EMPs possess both physiological and pathological effects and may promote oxidative stress and vascular inflammation. EMPs release is triggered by inducer like angiotensin II, lipopolysaccharide, and hydrogen peroxide leading to the progression of atherosclerosis. However, there are multiple physiological pathways for EMPs generation like NADPH oxidase derived endothelial ROS formation, Rho kinase pathway, and mitogen-activated protein kinases. Endothelial dysfunction is a key initiating event in atherosclerotic plaque formation. Atheroemboli, resulting from ruptured carotid plaques, is a major cause of stroke. Increasing evidence suggests that EMPs play an important role in the pathogenesis of cardiovascular disease, acting as a marker of damage, either exacerbating disease progression or triggering a repair response. In this regard, it has been suggested that EMPs have the potential to act as biomarkers of disease status. This review aims to provide updated information of EMPs in relation to atherosclerosis pathogenesis. |
format | Article |
id | doaj-art-9ed79c74adfe47eca99ea202267f016d |
institution | Kabale University |
issn | 2090-908X |
language | English |
publishDate | 2016-01-01 |
publisher | Wiley |
record_format | Article |
series | Scientifica |
spelling | doaj-art-9ed79c74adfe47eca99ea202267f016d2025-02-03T01:26:20ZengWileyScientifica2090-908X2016-01-01201610.1155/2016/85140568514056Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis ProgressionKeshav Raj Paudel0Nisha Panth1Dong-Wook Kim2Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, Jeonnam 534-729, Republic of KoreaCollege of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of KoreaDepartment of Oriental Medicine Resources, Mokpo National University, Muan-gun, Jeonnam 534-729, Republic of KoreaThe levels of circulating microparticles (MPs) are raised in various cardiovascular diseases. Their increased level in plasma is regarded as a biomarker of alteration in vascular function. The prominent MPs present in blood are endothelial microparticles (EMPs) described as complex submicron (0.1 to 1.0 μm) vesicles like structure, released in response to endothelium cell activation or apoptosis. EMPs possess both physiological and pathological effects and may promote oxidative stress and vascular inflammation. EMPs release is triggered by inducer like angiotensin II, lipopolysaccharide, and hydrogen peroxide leading to the progression of atherosclerosis. However, there are multiple physiological pathways for EMPs generation like NADPH oxidase derived endothelial ROS formation, Rho kinase pathway, and mitogen-activated protein kinases. Endothelial dysfunction is a key initiating event in atherosclerotic plaque formation. Atheroemboli, resulting from ruptured carotid plaques, is a major cause of stroke. Increasing evidence suggests that EMPs play an important role in the pathogenesis of cardiovascular disease, acting as a marker of damage, either exacerbating disease progression or triggering a repair response. In this regard, it has been suggested that EMPs have the potential to act as biomarkers of disease status. This review aims to provide updated information of EMPs in relation to atherosclerosis pathogenesis.http://dx.doi.org/10.1155/2016/8514056 |
spellingShingle | Keshav Raj Paudel Nisha Panth Dong-Wook Kim Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression Scientifica |
title | Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression |
title_full | Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression |
title_fullStr | Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression |
title_full_unstemmed | Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression |
title_short | Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression |
title_sort | circulating endothelial microparticles a key hallmark of atherosclerosis progression |
url | http://dx.doi.org/10.1155/2016/8514056 |
work_keys_str_mv | AT keshavrajpaudel circulatingendothelialmicroparticlesakeyhallmarkofatherosclerosisprogression AT nishapanth circulatingendothelialmicroparticlesakeyhallmarkofatherosclerosisprogression AT dongwookkim circulatingendothelialmicroparticlesakeyhallmarkofatherosclerosisprogression |