An Efficient Laguerre-Based FDTD Iterative Algorithm in 3D Cylindrical Coordinate System

Here an efficient Laguerre-based finite-difference time-domain iterative algorithm is proposed. Different from the previously developed iterative procedure used in the efficient FDTD algorithm, a new perturbation term combined with the Gauss–Seidel iterative procedure is introduced to form the new L...

Full description

Saved in:
Bibliographic Details
Main Authors: Da-Wei Zhu, Hai-Lin Chen, Zi-Yu Pan, Bo-Ao Xu, Bin Chen
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2019/9542976
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here an efficient Laguerre-based finite-difference time-domain iterative algorithm is proposed. Different from the previously developed iterative procedure used in the efficient FDTD algorithm, a new perturbation term combined with the Gauss–Seidel iterative procedure is introduced to form the new Laguerre-based FDTD algorithm in the 3D cylindrical coordinate system. Such a treatment scheme can reduce the splitting error to a low level and obtain a good convergence; in other words, it can improve the efficiency and accuracy than other algorithms. To verify the performance of the proposed algorithm, two scattering numerical examples are given. The computation results show that the proposed algorithm can be better than the ADI-FDTD algorithm in terms of efficiency and accuracy. Meanwhile, the proposed algorithm is extremely useful for the problems with fine structures in the 3D cylindrical coordinate system.
ISSN:1687-5869
1687-5877