Classification of lung cancer severity using gene expression data based on deep learning

Abstract Lung cancer is one of the most prevalent diseases affecting people and is a main factor in the rising death rate. Recently, Machine Learning (ML) and Deep Learning (DL) techniques have been utilized to detect and classify various types of cancer, including lung cancer. In this research, a D...

Full description

Saved in:
Bibliographic Details
Main Authors: Ali Bou Nassif, Nour Ayman Abujabal, Aya Alchikh Omar
Format: Article
Language:English
Published: BMC 2025-05-01
Series:BMC Medical Informatics and Decision Making
Subjects:
Online Access:https://doi.org/10.1186/s12911-025-03011-w
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Lung cancer is one of the most prevalent diseases affecting people and is a main factor in the rising death rate. Recently, Machine Learning (ML) and Deep Learning (DL) techniques have been utilized to detect and classify various types of cancer, including lung cancer. In this research, a DL model, specifically a Convolutional Neural Network (CNN), is proposed to classify lung cancer stages for two types of lung cancer (LUAD and LUSC) using a gene dataset. Evaluating and validating the performance of the proposed model required addressing some common challenges in gene datasets, such as class imbalance and overfitting, due to the low number of samples and the high number of features. These issues were mitigated by deeply analyzing the gene dataset and lung cancer stages from a medical perspective, along with extensive research and experiments. As a result, the optimized CNN model using F-test feature selection method, achieved high classification accuracies of approximately 93.94% for LUAD and 88.42% for LUSC.
ISSN:1472-6947