Calculations of Constant-Height STM Images of Fullerene C60 Adsorbed onto a Surface

Constant-height scanning tunneling microscopy (STM) images of a C60 molecule adsorbed onto a surface were calculated using symmetry-adapted Hückel molecular orbitals (HMOs). Three adsorption orientations of C60 are considered. The interaction between the C60 molecule and the surface was treated usin...

Full description

Saved in:
Bibliographic Details
Main Author: Effat A. Rashed
Format: Article
Language:English
Published: Wiley 2023-01-01
Series:Journal of Spectroscopy
Online Access:http://dx.doi.org/10.1155/2023/8841630
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Constant-height scanning tunneling microscopy (STM) images of a C60 molecule adsorbed onto a surface were calculated using symmetry-adapted Hückel molecular orbitals (HMOs). Three adsorption orientations of C60 are considered. The interaction between the C60 molecule and the surface was treated using symmetry arguments only. Projection operators were used to generate symmetry-adapted HMOs of the molecule. These orbitals were then used to construct idealized constant-height STM images using the simple tunneling theory of Tersoff and Hamann. A comparison is made with published experimental STM maps. The results show that, for each orientation of C60, split orbitals of the same symmetry have similar appearances in the constant-height maps. They also show that the map of a molecular orbital of a complete degeneracy is dominated by only one or two of its components.
ISSN:2314-4939