Using Hybrid Feature and Classifier Fusion for an Asynchronous Brain–Computer Interface Framework Based on Steady-State Motion Visual Evoked Potentials
This study proposes an asynchronous brain–computer interface (BCI) framework based on steady-state motion visual evoked potentials (SSMVEPs), designed to enhance the accuracy and robustness of control state recognition. The method integrates filter bank common spatial patterns (FBCSPs) and filter ba...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/11/6010 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|