Suppression of MRI Truncation Artifacts Using Total Variation Constrained Data Extrapolation
The finite sampling of k-space in MRI causes spurious image artifacts, known as Gibbs ringing, which result from signal truncation at the border of k-space. The effect is especially visible for acquisitions at low resolution and commonly reduced by filtering at the expense of image blurring. The pre...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2008-01-01
|
Series: | International Journal of Biomedical Imaging |
Online Access: | http://dx.doi.org/10.1155/2008/184123 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The finite sampling of k-space in MRI causes spurious image artifacts, known as Gibbs ringing, which result from signal truncation at the border of k-space. The effect is especially visible for acquisitions at low resolution and commonly reduced by filtering at the expense of image blurring. The present work demonstrates that the simple assumption of a piecewise-constant object can be exploited to extrapolate the data in k-space beyond the measured part. The method allows for a significant reduction of truncation artifacts without compromising resolution. The assumption translates into a total variation minimization problem, which can be solved with a nonlinear optimization algorithm. In the presence of substantial noise, a modified approach offers edge-preserving denoising by allowing for slight deviations from the measured data in addition to supplementing data. The effectiveness of these methods is demonstrated with simulations as well as experimental data for a phantom and human brain in vivo. |
---|---|
ISSN: | 1687-4188 1687-4196 |