Optimal Portfolio Selection of Mean-Variance Utility with Stochastic Interest Rate

In order to tackle the problem of how investors in financial markets allocate wealth to stochastic interest rate governed by a nested stochastic differential equations (SDEs), this paper employs the Nash equilibrium theory of the subgame perfect equilibrium strategy and propose an extended Hamilton-...

Full description

Saved in:
Bibliographic Details
Main Authors: Shuang Li, Shican Liu, Yanli Zhou, Yonghong Wu, Xiangyu Ge
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2020/3153297
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to tackle the problem of how investors in financial markets allocate wealth to stochastic interest rate governed by a nested stochastic differential equations (SDEs), this paper employs the Nash equilibrium theory of the subgame perfect equilibrium strategy and propose an extended Hamilton-Jacobi-Bellman (HJB) equation to analyses the optimal control over the financial system involving stochastic interest rate and state-dependent risk aversion (SDRA) mean-variance utility. By solving the corresponding nonlinear partial differential equations (PDEs) deduced from the extended HJB equation, the analytical solutions of the optimal investment strategies under time inconsistency are derived. Finally, the numerical examples provided are used to analyze how stochastic (short-term) interest rates and risk aversion affect the optimal control strategies to illustrate the validity of our results.
ISSN:2314-8896
2314-8888