Multiple Solutions for Double-Phase Elliptic Problem with NonLocal Interaction
This study explores the existence and multiplicity of weak solutions for a double-phase elliptic problem with nonlocal interactions, formulated as a Dirichlet boundary value problem. The associated differential operator exhibits two distinct phases governed by exponents <i>p</i> and <...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/8/1281 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study explores the existence and multiplicity of weak solutions for a double-phase elliptic problem with nonlocal interactions, formulated as a Dirichlet boundary value problem. The associated differential operator exhibits two distinct phases governed by exponents <i>p</i> and <i>q</i>, which satisfy a prescribed structural condition. By employing critical point theory, we establish the existence of at least one weak solution and, under appropriate assumptions, demonstrate the existence of three distinct solutions. The analysis is based on abstract variational methods, with a particular focus on the critical point theorems of Bonanno and Bonanno–Marano. |
|---|---|
| ISSN: | 2227-7390 |