Impact of training data composition on the generalizability of convolutional neural network aortic cross-section segmentation in four-dimensional magnetic resonance flow imaging

ABSTRACT: Background: Four-dimensional cardiovascular magnetic resonance flow imaging (4D flow CMR) plays an important role in assessing cardiovascular diseases. However, the manual or semi-automatic segmentation of aortic vessel boundaries in 4D flow data introduces variability and limits the repr...

Full description

Saved in:
Bibliographic Details
Main Authors: Chiara Manini, Markus Hüllebrand, Lars Walczak, Sarah Nordmeyer, Lina Jarmatz, Titus Kuehne, Heiko Stern, Christian Meierhofer, Andreas Harloff, Jennifer Erley, Sebastian Kelle, Peter Bannas, Ralf Felix Trauzeddel, Jeanette Schulz-Menger, Anja Hennemuth
Format: Article
Language:English
Published: Elsevier 2024-01-01
Series:Journal of Cardiovascular Magnetic Resonance
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1097664724011086
Tags: Add Tag
No Tags, Be the first to tag this record!