On the Existence of Polynomials with Chaotic Behaviour
We establish a general result on the existence of hypercyclic (resp., transitive, weakly mixing, mixing, frequently hypercyclic) polynomials on locally convex spaces. As a consequence we prove that every (real or complex) infinite-dimensional separable Frèchet space admits mixing (hence hypercyclic)...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2013-01-01
|
| Series: | Journal of Function Spaces and Applications |
| Online Access: | http://dx.doi.org/10.1155/2013/320961 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|