Approximately Quintic and Sextic Mappings Form r-Divisible Groups into Ŝerstnev Probabilistic Banach Spaces: Fixed Point Method

Using the fixed point method, we investigate the stability of the systems of quadratic-cubic and additive-quadratic-cubic functional equations with constant coefficients form r-divisible groups into Ŝerstnev probabilistic Banach spaces.

Saved in:
Bibliographic Details
Main Authors: M. Eshaghi Gordji, Y. J. Cho, M. B. Ghaemi, H. Majani
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2011/572062
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832564977374855168
author M. Eshaghi Gordji
Y. J. Cho
M. B. Ghaemi
H. Majani
author_facet M. Eshaghi Gordji
Y. J. Cho
M. B. Ghaemi
H. Majani
author_sort M. Eshaghi Gordji
collection DOAJ
description Using the fixed point method, we investigate the stability of the systems of quadratic-cubic and additive-quadratic-cubic functional equations with constant coefficients form r-divisible groups into Ŝerstnev probabilistic Banach spaces.
format Article
id doaj-art-96e8a0f3dcd0443aa3cae5220faad97d
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-96e8a0f3dcd0443aa3cae5220faad97d2025-02-03T01:09:46ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2011-01-01201110.1155/2011/572062572062Approximately Quintic and Sextic Mappings Form r-Divisible Groups into Ŝerstnev Probabilistic Banach Spaces: Fixed Point MethodM. Eshaghi Gordji0Y. J. Cho1M. B. Ghaemi2H. Majani3Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, IranDepartment of Mathematics Education and the RINS, Gyeongsang National University, Chinju 660-701, Republic of KoreaDepartment of Mathematics, Iran University of Science & Technology, Narmak, Tehran 16844, IranDepartment of Mathematics, Iran University of Science & Technology, Narmak, Tehran 16844, IranUsing the fixed point method, we investigate the stability of the systems of quadratic-cubic and additive-quadratic-cubic functional equations with constant coefficients form r-divisible groups into Ŝerstnev probabilistic Banach spaces.http://dx.doi.org/10.1155/2011/572062
spellingShingle M. Eshaghi Gordji
Y. J. Cho
M. B. Ghaemi
H. Majani
Approximately Quintic and Sextic Mappings Form r-Divisible Groups into Ŝerstnev Probabilistic Banach Spaces: Fixed Point Method
Discrete Dynamics in Nature and Society
title Approximately Quintic and Sextic Mappings Form r-Divisible Groups into Ŝerstnev Probabilistic Banach Spaces: Fixed Point Method
title_full Approximately Quintic and Sextic Mappings Form r-Divisible Groups into Ŝerstnev Probabilistic Banach Spaces: Fixed Point Method
title_fullStr Approximately Quintic and Sextic Mappings Form r-Divisible Groups into Ŝerstnev Probabilistic Banach Spaces: Fixed Point Method
title_full_unstemmed Approximately Quintic and Sextic Mappings Form r-Divisible Groups into Ŝerstnev Probabilistic Banach Spaces: Fixed Point Method
title_short Approximately Quintic and Sextic Mappings Form r-Divisible Groups into Ŝerstnev Probabilistic Banach Spaces: Fixed Point Method
title_sort approximately quintic and sextic mappings form r divisible groups into serstnev probabilistic banach spaces fixed point method
url http://dx.doi.org/10.1155/2011/572062
work_keys_str_mv AT meshaghigordji approximatelyquinticandsexticmappingsformrdivisiblegroupsintoserstnevprobabilisticbanachspacesfixedpointmethod
AT yjcho approximatelyquinticandsexticmappingsformrdivisiblegroupsintoserstnevprobabilisticbanachspacesfixedpointmethod
AT mbghaemi approximatelyquinticandsexticmappingsformrdivisiblegroupsintoserstnevprobabilisticbanachspacesfixedpointmethod
AT hmajani approximatelyquinticandsexticmappingsformrdivisiblegroupsintoserstnevprobabilisticbanachspacesfixedpointmethod