On a density problem of Erdös
For a positive integer n, let P(n) denotes the largest prime divisor of n and define the set: 𝒮(x)=𝒮={n≤x:n does not divide P(n)!}. Paul Erdös has proposed that |S|=o(x) as x→∞, where |S| is the number of n∈S. This was proved by Ilias Kastanas. In this paper we will show the stronger result that...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
1999-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171299226555 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|