Analysis and Simulation of Polishing Robot Operation Trajectory Planning

Trajectory planning is essential for robotic polishing tasks, as the effectiveness of this planning directly influences the quality of the work and the energy efficiency of the operation. This study introduces an innovative trajectory planning method for robotic polishing tasks, focusing on the deve...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinhong Zeng, Yongxiang Wang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/18/1/53
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Trajectory planning is essential for robotic polishing tasks, as the effectiveness of this planning directly influences the quality of the work and the energy efficiency of the operation. This study introduces an innovative trajectory planning method for robotic polishing tasks, focusing on the development and application of quintic B-spline interpolation. Recognizing the critical impact of trajectory planning on the quality and energy efficiency of robotic operations, we analyze the structure and parameters of the ABB-IRB120 robot within a laboratory setting. Using the Denavit–Hartenberg parameter method, a kinematic model is established, and the robot’s motion equations are derived through matrix transformation. We then propose a novel approach by implementing both fifth-degree polynomial and quintic B-spline interpolation algorithms for planning the robot’s spatial spiral arc trajectory, which is a key contribution of this work. The effectiveness of these methodologies is validated through simulation in MATLAB’s robotics toolbox. Our findings demonstrate that the quintic B-spline interpolation not only significantly improves task precision but also optimizes energy consumption, making it a superior method for trajectory planning in robotic grinding applications. By integrating advanced interpolation techniques, this study provides substantial technological and environmental benefits, offering a groundbreaking reference for enhancing the precision and efficiency of robotic control systems.
ISSN:1999-4893