From 2D to 3D Urban Analysis: An Adaptive Urban Zoning Framework That Takes Building Height into Account

The vertical heterogeneous structures formed during the evolution of urban agglomerations, driven by globalization, pose challenges to traditional two-dimensional spatial analysis methods. This study addresses the vertical heterogeneity and spatial multiscale problem in three-dimensional urban space...

Full description

Saved in:
Bibliographic Details
Main Authors: Tao Shen, Fulu Kong, Shuai Yuan, Xueying Wang, Di Sun, Zongshuo Ren
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/7/1182
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The vertical heterogeneous structures formed during the evolution of urban agglomerations, driven by globalization, pose challenges to traditional two-dimensional spatial analysis methods. This study addresses the vertical heterogeneity and spatial multiscale problem in three-dimensional urban space and proposes an adaptive framework that takes into account building height for multiscale clustering in urban areas. Firstly, we established a macro-, meso- and micro-level analysis system for the characteristics of urban spatial structures. Subsequently, we developed a parameter-adaptive model through a dynamic coupling mechanism of height thresholds and average elevations. Finally, we proposed a density-based clustering method that integrates the multiscale urban analysis with parameter adaptation to distinguish urban spatial features at different scales, thereby achieving multiscale urban regional delineation. The experimental results demonstrate that the proposed clustering framework outperforms traditional density-based and hierarchical clustering algorithms in terms of both the Silhouette Coefficient and the Davies–Bouldin Index, effectively resolving the problem of vertical density variation in urban clustering.
ISSN:2075-5309