Microstructural Characterization and Mechanical Properties of Ti-6Al-4V Alloy Subjected to Dynamic Plastic Deformation Achieved by Multipass Hammer Forging with Different Forging Temperatures

Dynamic plastic deformation (DPD) achieved by multipass hammer forging is one of the most important metal forming operations to create the excellent materials properties. By using the integrated approaches of optical microscope and scanning electron microscope, the forging temperature effects on the...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiurong Fang, Jiang Wu, Xue Ou, Fuqiang Yang
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2019/6410238
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dynamic plastic deformation (DPD) achieved by multipass hammer forging is one of the most important metal forming operations to create the excellent materials properties. By using the integrated approaches of optical microscope and scanning electron microscope, the forging temperature effects on the multipass hammer forging process and the forged properties of Ti-6Al-4V alloy were evaluated and the forging samples were controlled with a total height reduction of 50% by multipass strikes from 925°C to 1025°C. The results indicate that the forging temperature has a significant effect on morphology and the volume fraction of primary α phase, and the microstructural homogeneity is enhanced after multipass hammer forging. The alloy slip possibility and strain rates could be improved by multipass strikes, but the marginal efficiency decreases with the increased forging temperature. Besides, a forging process with an initial forging temperature a bit above β transformation and finishing the forging a little below the β transformation is suggested to balance the forging deformation resistance and forged mechanical properties.
ISSN:1687-8434
1687-8442