Method for the Calculation of DPA in the Reactor Pressure Vessel of Atucha II

One of the limiting factors of the life of a nuclear power plant (NPP) is the state of the reactor pressure vessel (RPV). Embrittlement is the most important effect affecting RPV aging. The irradiation with neutrons, especially fast neutrons, is the primary cause of this embrittlement. NPP safe oper...

Full description

Saved in:
Bibliographic Details
Main Authors: J. A. Mascitti, M. Madariaga
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Science and Technology of Nuclear Installations
Online Access:http://dx.doi.org/10.1155/2011/534689
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One of the limiting factors of the life of a nuclear power plant (NPP) is the state of the reactor pressure vessel (RPV). Embrittlement is the most important effect affecting RPV aging. The irradiation with neutrons, especially fast neutrons, is the primary cause of this embrittlement. NPP safe operation requires to ensure RPV integrity over its lifetime, threatened by the neutron radiation-induced embrittlement. In this paper, we identify the areas where the RPV neutron radiation is maximum and perform calculations of the displacement-per-atom (DPA) rate in those areas using the MCNP5 code. It was determined that the maximum DPA rate in the RPV wall with fresh fuel element (FE) is 3.76(3) × 10-12 s-1, it takes place in front of FEs BA42 and BL43, and it is symmetrical about the central channel, LG04, and LH03.
ISSN:1687-6075
1687-6083