Leveraging large language models for preoperative prevention of cardiopulmonary bypass-associated acute kidney injury
Background Acute kidney injury (AKI) usually occurs after cardiopulmonary bypass (CPB) and threatens life without timely intervention. Early assessment and prevention are critical for saving AKI patients. However, numerical data-driven models make it difficult to predict the AKI risk using preoperat...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis Group
2025-12-01
|
| Series: | Renal Failure |
| Subjects: | |
| Online Access: | https://www.tandfonline.com/doi/10.1080/0886022X.2025.2509786 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!