Computational Modelling of Anti-Carcinogenic Effects of Naringenin

Naringenin is a bioactive polyphenol derived from citrus fruits, known for its various beneficial effects on human health. This study focuses on naringenin as a polyphenolic scavenger of nine ultimate chemical carcinogens: 2-cyanoethylene oxide, aflatoxin B1 exo-8,9-epoxide, glycidamide, ethylene ox...

Full description

Saved in:
Bibliographic Details
Main Authors: Lamija Ahmetović, Veronika Furlan, Urban Bren
Format: Article
Language:English
Published: Croatian Society of Chemical Engineers 2024-12-01
Series:Kemija u Industriji
Subjects:
Online Access:http://silverstripe.fkit.hr/kui/assets/Uploads/4-537-547-KUI-13-2024.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Naringenin is a bioactive polyphenol derived from citrus fruits, known for its various beneficial effects on human health. This study focuses on naringenin as a polyphenolic scavenger of nine ultimate chemical carcinogens: 2-cyanoethylene oxide, aflatoxin B1 exo-8,9-epoxide, glycidamide, ethylene oxide, propylene oxide, styrene oxide, vinyl carbamate epoxide, chloroethylene oxide, and β-propiolactone. The aim was to calculate the activation free energies and elucidate the molecular mechanisms of alkylation reactions between naringenin and these genotoxic chemical carcinogens, using the quantum-mechanical Hartree-Fock method in combination with two flexible basis sets, 6-31G(d) and 6-311++G(d,p). Activation free energy calculations were performed using Gaussian 09 in a vacuum and with two implicit solvation models: Polarisable Continuum Model and Langevin Dipoles. To assess naringenin’s scavenging efficacy, the activation free energies calculated using these solvation models, were compared to the experimental values of the activation free energies between the same ultimate chemical carcinogens and the most reactive DNA base, guanine. The findings indicated naringenin's efficacy as a polyphenolic scavenger of six ultimate chemical carcinogens, particularly β-propiolactone, vinyl carbamate epoxide, and propylene oxide. For chloroethylene oxide, aflatoxin B1 exo-8,9-epoxide, and ethylene oxide, naringenin also demonstrated significant anti-carcinogenic potential, as the calculated activation free energies were comparable to experimentally determined values for guanine. However, naringenin's protective activity was less potent against 2-cyanoethylene oxide, glycidamide, and styrene oxide, where the calculated activation free energies were significantly higher than the experimental values for guanine.
ISSN:0022-9830
1334-9090