Silver Nanoparticles in Antifungal Applications: A Comparison of Biosynthesized and Physical Synthesized Nanoparticles on Paper-Biodegrading Fungi
Background: Paper substrates are highly susceptible to fungal degradation, as fungi produce enzymes that decompose paper materials. This study investigates and compares the antifungal efficacy of silver nanoparticles (AgNPs) synthesized through various physical and biological methods. The fungal str...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Kurdistan University of Medical Sciences
2024-11-01
|
Series: | Journal of Advances in Environmental Health Research |
Subjects: | |
Online Access: | https://jaehr.muk.ac.ir/article_213638_57d253cc419dde2706093b2f229fa017.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background: Paper substrates are highly susceptible to fungal degradation, as fungi produce enzymes that decompose paper materials. This study investigates and compares the antifungal efficacy of silver nanoparticles (AgNPs) synthesized through various physical and biological methods. The fungal strains tested, Penicillium sp. and Aspergillus sp., were isolated from paper samples in a previous study, chosen for their more prevalence in contaminated paper.Methods: Five types of AgNPs, synthesized using both biological and physical methods, were evaluated. The biological methods involved the use of extracts from Juglans regia green husk, Malva sylvestris leaves, and cyanobacterial cells. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of the AgNPs were determined using standard protocols.Results: The MIC values of the AgNPs synthesized from different sources exhibited varying degrees of antifungal activity against the tested fungi. The AgNPs’ effectiveness ranked as follows: (1) AgNPs produced by Nostoc pruniforme, (2) AgNPs produced by M. sylvestris, (3) AgNPs produced by Nostoc IBRC-M5064, (4) AgNPs produced by J. regia, and (5) physically synthesized AgNPs.Conclusion: These findings highlight the potential of biologically synthesized AgNPs as environmentally friendly biocidal agents for preventing and controlling paper biodegradation. |
---|---|
ISSN: | 2345-3990 |