Chemical- and photo-activation of protein-protein thiol-ene coupling for protein profiling
Abstract The thiol-ene reaction between an alkene and a thiol can be exploited for selective labelling of cysteine residues in protein profiling applications. Here, we explore thiol-ene activation in systems from chemical models to complex cellular milieus, using UV, visible wavelength and redox ini...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Communications Chemistry |
Online Access: | https://doi.org/10.1038/s42004-025-01412-6 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The thiol-ene reaction between an alkene and a thiol can be exploited for selective labelling of cysteine residues in protein profiling applications. Here, we explore thiol-ene activation in systems from chemical models to complex cellular milieus, using UV, visible wavelength and redox initiators. Initial studies in chemical models required an oxygen-free environment for efficient coupling and showed very poor activation when using a redox initiator. When thiol-ene activation was performed in protein and cell lysate models, all three initiation methods were successful. Faster thiol-ene reaction was observed as the cysteine and alkene were brought into proximity by a binding event prior to activation, leading to quicker adduct formation in the protein model system than the chemical models. Furthermore, in the protein-protein coupling, none of the activators required an oxygen-free environment. Taken together, these observations demonstrate the broad potential for thiol-ene coupling to be used in protein profiling. |
---|---|
ISSN: | 2399-3669 |