Experimental Study of Gangue Layer Weakening with Deep-Hole Presplitting Blasting
Advances in coal mining technology and an increase in coal output are resulting in increasingly challenging conditions being encountered at coal seams. This is particularly so at thin coal seams, where a large number of hard rock layers known as gangue are often present, which seriously affect the n...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2021/4796500 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832547092842676224 |
---|---|
author | Jianchi Hao Lifeng Ren Hu Wen Duo Zhang |
author_facet | Jianchi Hao Lifeng Ren Hu Wen Duo Zhang |
author_sort | Jianchi Hao |
collection | DOAJ |
description | Advances in coal mining technology and an increase in coal output are resulting in increasingly challenging conditions being encountered at coal seams. This is particularly so at thin coal seams, where a large number of hard rock layers known as gangue are often present, which seriously affect the normal operation of the shearer and reduce coal output. Therefore, the effective weakening of hard gangue layers in a coal seam is crucial to ensure that the shearer operates effectively and that coal output is maximized. In this paper, the weakening effect of deep-hole presplitting blasting technology on the hard gangue layer in a coal seam is studied via a similar simulation. Four test schemes are designed: (1) A blasting hole spacing of 200 mm with the holes offset vertically. (2) A blast hole spacing of 300 mm with the holes offset vertically. (3) A blast hole spacing of 200 mm with the holes parallel to the gangue layer. (4) A blasting hole spacing of 200 mm with the holes offset vertically and initiation of interval blasting. The effect of the different blasting hole spacings and arrangements and different detonation methods on the weakening of coal seam clamping by gangue is studied, and the best configuration is identified. This improves the effect of weakening the coal gangue layer by deep-hole presplitting blasting. |
format | Article |
id | doaj-art-8816dd2272e1472e9cb01b31c12b5096 |
institution | Kabale University |
issn | 1875-9203 |
language | English |
publishDate | 2021-01-01 |
publisher | Wiley |
record_format | Article |
series | Shock and Vibration |
spelling | doaj-art-8816dd2272e1472e9cb01b31c12b50962025-02-03T06:46:09ZengWileyShock and Vibration1875-92032021-01-01202110.1155/2021/4796500Experimental Study of Gangue Layer Weakening with Deep-Hole Presplitting BlastingJianchi Hao0Lifeng Ren1Hu Wen2Duo Zhang3College of Safety Science and EngineeringCollege of Safety Science and EngineeringCollege of Safety Science and EngineeringCollege of Safety Science and EngineeringAdvances in coal mining technology and an increase in coal output are resulting in increasingly challenging conditions being encountered at coal seams. This is particularly so at thin coal seams, where a large number of hard rock layers known as gangue are often present, which seriously affect the normal operation of the shearer and reduce coal output. Therefore, the effective weakening of hard gangue layers in a coal seam is crucial to ensure that the shearer operates effectively and that coal output is maximized. In this paper, the weakening effect of deep-hole presplitting blasting technology on the hard gangue layer in a coal seam is studied via a similar simulation. Four test schemes are designed: (1) A blasting hole spacing of 200 mm with the holes offset vertically. (2) A blast hole spacing of 300 mm with the holes offset vertically. (3) A blast hole spacing of 200 mm with the holes parallel to the gangue layer. (4) A blasting hole spacing of 200 mm with the holes offset vertically and initiation of interval blasting. The effect of the different blasting hole spacings and arrangements and different detonation methods on the weakening of coal seam clamping by gangue is studied, and the best configuration is identified. This improves the effect of weakening the coal gangue layer by deep-hole presplitting blasting.http://dx.doi.org/10.1155/2021/4796500 |
spellingShingle | Jianchi Hao Lifeng Ren Hu Wen Duo Zhang Experimental Study of Gangue Layer Weakening with Deep-Hole Presplitting Blasting Shock and Vibration |
title | Experimental Study of Gangue Layer Weakening with Deep-Hole Presplitting Blasting |
title_full | Experimental Study of Gangue Layer Weakening with Deep-Hole Presplitting Blasting |
title_fullStr | Experimental Study of Gangue Layer Weakening with Deep-Hole Presplitting Blasting |
title_full_unstemmed | Experimental Study of Gangue Layer Weakening with Deep-Hole Presplitting Blasting |
title_short | Experimental Study of Gangue Layer Weakening with Deep-Hole Presplitting Blasting |
title_sort | experimental study of gangue layer weakening with deep hole presplitting blasting |
url | http://dx.doi.org/10.1155/2021/4796500 |
work_keys_str_mv | AT jianchihao experimentalstudyofganguelayerweakeningwithdeepholepresplittingblasting AT lifengren experimentalstudyofganguelayerweakeningwithdeepholepresplittingblasting AT huwen experimentalstudyofganguelayerweakeningwithdeepholepresplittingblasting AT duozhang experimentalstudyofganguelayerweakeningwithdeepholepresplittingblasting |