Soliton Molecules and Some Novel Types of Hybrid Solutions to (2 + 1)-Dimensional Variable-Coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada Equation

Soliton molecules of the (2 + 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation are derived by N-soliton solutions and a new velocity resonance condition. Moreover, soliton molecules can become asymmetric solitons when the distance between two solitons of the molecule is...

Full description

Saved in:
Bibliographic Details
Main Authors: Shuxin Yang, Zhao Zhang, Biao Li
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2020/2670710
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Soliton molecules of the (2 + 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation are derived by N-soliton solutions and a new velocity resonance condition. Moreover, soliton molecules can become asymmetric solitons when the distance between two solitons of the molecule is small enough. Finally, we obtained some novel types of hybrid solutions which are components of soliton molecules, lump waves, and breather waves by applying velocity resonance, module resonance of wave number, and long wave limit method. Some figures are presented to demonstrate clearly dynamics features of these solutions.
ISSN:1687-9120
1687-9139