There are no primitive Teichmüller curves in $\mathrm{Prym}(2,2)$
We complete the work of Lanneau–Möller [4] to show that there are no primitive Teichmüller curves in $\mathrm{Prym}(2,2)$.
Saved in:
Main Authors: | Boulanger, Julien, Freedman, Sam |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-03-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.551/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
A single source theorem for primitive points on curves
by: Maleeha Khawaja, et al.
Published: (2025-01-01) -
L’avènement de la science météorologique du XVII$^{\protect \mathrm{e}}$ au XIX$^{\protect \mathrm{e}}$ siècle
by: Beaudouin, Denis
Published: (2023-09-01) -
Fluctuations of anisotropic flow in Pb+Pb collisions at s NN $$ \sqrt{{\mathrm{s}}_{\mathrm{NN}}} $$ = 5.02 TeV with the ATLAS detector
by: The ATLAS collaboration, et al.
Published: (2020-01-01) -
Research on cloud dynamic public key information security based on elliptic curve and primitive Pythagoras
by: Zhenlong Man, et al.
Published: (2025-02-01) -
Audouin Dollfus, astronome du XX$^{\protect \mathrm{e}}$ siècle
by: Chanetz, Bruno, et al.
Published: (2023-08-01)