Analysis on GNSS Common View and Precise Point Positioning Time Transfer: BDS-3/Galileo/GPS

The International Bureau of Weights and Measures (BIPM) currently mainly uses GPS time transfer for the calculation of UTC. In order to enhance the reliability of the time links, the common-view (CV) and Precise Point Positioning (PPP) time transfer performance of the dual-frequency ionosphere-free...

Full description

Saved in:
Bibliographic Details
Main Authors: Meng Wang, Chunlei Pang, Dong Guo, Shize Wang, Yang Zhang, Jinglong Gao, Xiubin Zhao
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/10/1725
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The International Bureau of Weights and Measures (BIPM) currently mainly uses GPS time transfer for the calculation of UTC. In order to enhance the reliability of the time links, the common-view (CV) and Precise Point Positioning (PPP) time transfer performance of the dual-frequency ionosphere-free combination for BRUX-SPT0, NIST-USN7, and BRUX-USN7 links was evaluated, including GPS (P1 & P2), Galileo (E1 & E5a), and BDS-3 (B1I & B3I, B1I & B2a, B1C & B3I, B1C & B2a). The experimental results show that the precision and average frequency stability (AFT) of BDS-3 B1C & B2a CV and PPP links are better than those of BDS-3 B1I & B3I, B1I & B2a, and B1C & B3I links. Compared to the GPS P1 & P2 and BDS-3 B1C & B2a CV links, the Galileo E1 & E5a links have the highest precision. In addition, the precision of GPS PPP links outperforms the BDS-3 and Galileo links. The short-term FT (frequency stability) of GPS PPP links is better than that of BDS-3 B1C & B2a PPP links. When the average time is greater than 4.3 h, however, the BDS-3 B1C & B2a PPP link’s AFT is significantly improved compared with the Galileo PPP links.
ISSN:2072-4292